- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Dorali, P (1)
-
Lee, T (1)
-
Shahmoradi, Z (1)
-
Weng, C. Y. (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Purpose : Personalized screening guidelines can be an effective strategy to prevent diabetic retinopathy (DR)-related vision loss. However, these strategies typically do not capture behavior-based factors such as a patient’s compliance or cost preferences. This study develops a mathematical model to identify screening policies that capture both DR progression and behavioral factors to provide personalized recommendations. Methods : A partially observable Markov decision process model (POMDP) is developed to provide personalized screening recommendations. For each patient, the model estimates the patient’s probability of having a sight-threatening diabetic eye disorder (STDED) yearly via Bayesian inference based on natural history, screening results, and compliance behavior. The model then determines a personalized, threshold-based recommendation for each patient annually--either no action (NA), teleretinal imaging (TRI), or clinical screening (CS)--based on the patient’s current probability of having STDED as well as patient-specific preference between cost saving ($) and QALY gain. The framework is applied to a hypothetical cohort of 40-year-old African American male patients. Results : For the base population with TRI and CS compliance rates of 65% and 55% and equal preference for cost and QALY, NA is identified as an optimal recommendation when the patient’s probability of having STDED is less than 0.72%, TRI when the probability is [0.72%, 2.09%], and CS when the probability is above 2.09%. Simulated against annual clinical screening, the model-based policy finds an average decrease of 7.07% in cost/QALY (95% CI; 6.93-7.23%) and 15.05% in blindness prevalence over a patient’s lifetime (95% CI; 14.88-15.23%). For patients with equal preference for cost and QALY, the model identifies 6 different types of threshold-based policies (See Fig 1). For patients with strong preference for QALY gain, CS-only policies had an increase in prevalence by a factor of 19.2 (see Fig 2). Conclusions : The POMDP model is highly flexible and responsive in incorporating behavioral factors when providing personalized screening recommendations. As a decision support tool, providers can use this modeling framework to provide unique, catered recommendations.more » « less
An official website of the United States government

Full Text Available